Tuesday, March 17, 2020

Triangle Fire Essay

Triangle Fire Essay Triangle Fire Essay On a late Saturday afternoon in the year 1911, a horrific fire began at the Triangle Shirtwaist Factory in New York City in which over a hundred and thirty women died. According to writer, Robert Caro, â€Å"some [women] died of smoke inhalation piled against the doors [from] trying to get out, some were burned to death and some jumped out of the windows;146 young women died [in all]† (Youtube.com, 2011). In the year prior to the fire, the factory workers protested for more sanitary conditions as well as additional safety precautions. With that being said, it took the sight of dead bodies scattered across the sidewalks for safety standards to finally take place. The Triangle Factory had a profound impact on the regulations of private businesses. The newly established laws changed every aspect of the factory environment for the better. If business owners’ had dangerous machinery, it would have to be regulated by the law. Based on the regulations provided by the video, â €Å"women would not be allowed to work more than 54 hours a week† (Youtube.com, 2011). It is against the law to allow a child who is under the age of fourteen to work in a factory. The unfortunate tragedy of the Triangle Factory fire paved the way for safer working conditions across the country. In addition to business officials taking a stand by going to the state legislature and pleading that there needs to be reformed laws so a disaster like the Triangle fire does not repeat itself. Other state representatives such as Charlie Murphy, Al Smith, Robert F. Wagner, and Francis Perkins played important roles as well. Solid changes were made by the government to improve the working conditions of the factory workers. To provide a safe

Sunday, March 1, 2020

Discover the Lithosphere in Plate Tectonics

Discover the Lithosphere in Plate Tectonics In the field of geology, what is the lithosphere? The lithosphere is the brittle outer layer of the solid Earth. The plates of plate tectonics are segments of the lithosphere. Its top is easy to see its at the Earths surface but the base of the lithosphere is in a transition, which is an active area of research. Flexing the Lithosphere The lithosphere is not totally rigid, but slightly elastic. It flexes when loads are placed on it or removed from it. Ice-age glaciers are one type of load. In Antarctica, for example, the thick ice cap has pushed the lithosphere well below sea level today. In Canada and Scandinavia, the lithosphere is still unflexing where the glaciers melted about 10,000 years ago. Here are some other types of loading: Construction of volcanoesDeposition of sedimentRise in sea levelFormation of large lakes and reservoirs Here are other examples of unloading: Erosion of mountainsExcavation of canyons and valleysDrying up of large water bodiesLowering of sea level The flexing of the lithosphere from these causes is relatively small (usually much less than a kilometer [km]), but measurable. We can model the lithosphere using simple engineering physics, as if it were a metal beam, and get an idea of its thickness. (This was first done in the early 1900s.) We can also study the behavior of seismic waves and place the base of the lithosphere at depths where these waves begin to slow down, indicating softer rock. These models suggest that the lithosphere ranges from less than 20 kilometers  in thickness near the mid-ocean ridges to about 50 km in old oceanic regions. Under the continents, the lithosphere is thicker ... from around 100 to as much as 350 km. These same studies show that underneath the lithosphere is a hotter, softer layer of solid rock named the asthenosphere. The rock of the asthenosphere is viscous rather than rigid and deforms slowly under stress, like putty. Therefore the lithosphere can move across or through the asthenosphere under the forces of plate tectonics. This also means that earthquake faults are cracks that extend through the lithosphere, but not beyond it.   Lithosphere Structure The lithosphere includes the crust (the rocks of the continents and the ocean floor) and the uppermost part of the mantle beneath the crust. These two layers are different in mineralogy but very similar mechanically. For the most part, they act as one plate. Although many people refer to crustal plates, its more accurate to call them lithospheric plates. It appears that the lithosphere ends where the temperature reaches a certain level that causes average mantle rock (peridotite) to grow too soft. But there are many complications and assumptions involved, and we can only say that the temperature would be from about 600 C to 1,200 C. A lot depends on pressure as well as temperature, and the rocks vary in composition due to plate-tectonic mixing. Its probably best not to expect a definitive boundary. Researchers often specify a thermal, mechanical or chemical lithosphere in their papers. The oceanic lithosphere is very thin at the spreading centers where it forms, but it grows thicker with time. As it cools, more hot rock from the asthenosphere freezes onto its underside. Over the course of about 10 million years, the oceanic lithosphere becomes denser than the asthenosphere beneath it. Therefore, most of the oceanic plates are ready for subduction whenever it happens. Bending and Breaking the Lithosphere The forces that bend and break the lithosphere come mostly from plate tectonics. Where plates collide, the lithosphere on one plate sinks down into the hot mantle. In that process of subduction, the plate bends downward as much as 90 degrees. As it bends and sinks, the subducting lithosphere cracks extensively, triggering earthquakes in the descending rock slab. In some cases (such as in northern California) the subducted part can break off completely, sinking into the deep Earth as the plates above it change their orientation. Even at great depths, subducted lithosphere can be brittle for millions of years, as long as it is relatively cool. The continental lithosphere can split, with the bottom part breaking off and sinking. This process is called delamination. The crustal part of the continental lithosphere is always less dense than the mantle part, which in turn is denser than the asthenosphere beneath. Gravity or drag forces from the asthenosphere can pull the crustal and mantle layers apart. Delamination allows the hot mantle to rise and yield melt underneath parts of a continent, causing widespread uplift and volcanism. Places like Californias Sierra Nevada, eastern Turkey and parts of China are being studied with delamination in mind.